a-Amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with a-amylase using multiple spectroscopic, kinetics and molecular docking approaches

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

The quest to suppress complications associated with diabetes mellitus is ever increasing, while food addi- tives and preservatives are currently being considered to play additional roles besides their uses in food enhancement and preservation. In the present study, the protective prowess of a common food preserva- tive (citric acid, CA) against advanced glycation end-products (AGEs) formation and its binding interac- tion mechanism with a-amylase (AMY), an enzyme linked with hyperglycemia management, were examined. Enzyme inhibition kinetics, intrinsic fluorescence, synchronous and 3D fluorescence spectro- scopies, ultraviolet–visible (UV–Vis) absorption spectroscopy, Fourier transform-infrared (FT-IR) spec- troscopy, thermodynamics, and molecular docking analyses were employed. Results obtained showed that citric acid decreased a-amylase activity via mixed inhibition (IC50 = 5.01 ± 0.87 mM, Kic = 2.42 mM, Kiu = 160.34 mM) and suppressed AGEs formation (IC50 = 0.795 ± 0.001 mM). The intrinsic fluorescence of free a-amylase was quenched via static mechanism with high bimolecular quenching constant (Kq) and binding constant (Ka) values. Analysis of thermodynamic properties revealed that AMY-CA complex was spontaneously formed (DG < 0), entropy driven (TDS > DH), with involvement of electrostatic forces. UV–Vis, FT-IR and 3D fluorescence spectroscopies affirmed alterations in a- amylase native conformation due to CA binding interaction. CA interacted with His-101, Asp-197, His- 299, and Glu-233 within AMY active site. Our findings indicated that CA could impair formation of AGEs and interact with a-amylase to slow down starch hydrolysis; vital properties in management of type 2 diabetes complications.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By