Adaptive Regression Model for Highly Skewed Count Data.

Loading...
Thumbnail Image
Date
2019-01-11
Journal Title
Journal ISSN
Volume Title
Publisher
IAEME
Abstract
A big task often faced by practitioners is in deciding the appropriate model to adopt in fitting count datasets. This paper is aimed at investigating a suitable model for fitting highly skewed count datasets. Among other models, COM-Poisson regression model was proposed in this paper for fitting count data due to its varying normalizing constant. Some statistical models were investigated along with the proposed model; these include Poisson, Negative Binomial, Zero-Inflated, Zero-inflated Poisson and Quasi- Poisson models. A real life dataset relating to visits to Doctor within a given period was equally used to test the behavior of the underlying models. From the findings, it is recommended that COM-Poisson regression model should be adopted in fitting highly skewed count datasets irrespective of the type of dispersion.
Description
Keywords
Citation