Adsorption of Lead and Cadmium Ions from Aqueous Solutions by Tripolyphosphate-Impregnated Kaolinite Clay

Loading...
Thumbnail Image
Date
2006-06
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
The pretreatment of Kaolinite clay with tripolyphosphate (TPP) increased the cation exchange capacity (CEC) of Kaolinite clay from 13.45 meq/100 g to 128.7 meq/100 g. The equilibrium adsorption capacity of TPP–Kaolinite clay for Pb2+ and Cd2+ was 126.58 mg/g and 113.64 mg/g, respectively. The presence of Na- and Ca-electrolytes and with increase in their concentrations reduced the selectivity of TPP–Kaolinite clay for Pb2+ than Cd2+. TPP–Kaolinite clay showed higher selectivity for Pb2+ in the presence of these electrolytes and at all concentrations of these electrolytes used for the study. Binary mixtures of Pb2+ and Cd2+ in various concentrations caused a decrease in the adsorption capacity of TPP–Kaolinite for either metal ion. However, this may have caused the adsorption of Cd2+ onto high energy sites on the surface of the TPP–Kaolinite clay. Non-linear Chi-square model analysis of adsorption data using Langmuir, Langmuir–Freudlich, Freudlich, Toth and Temkin isotherms reveals that the adsorption of Pb2+ and Cd2+ by TPP–Kaolinite clay were best described by the Toth and Freudlich isotherms, respectively. At low concentrations (≤500 mg/L) the adsorption of these metal ions showed better fits to the five models with Langmuir–Freudlich and Freudlich isotherms giving the best fits for Pb2+ and Cd2+, respectively.
Description
Keywords
Adsorbent, TPP–Kaolinite clay, Metal ions, Isotherms, Electrolytes, Adsorption
Citation