Exploring a distinct group of analytical functions linked with Bernoulli’s Lemniscate using the 𝑞-derivative

dc.contributor.authorTimilehin Gideon Shaba
dc.date.accessioned2025-07-14T12:36:23Z
dc.date.issued2024
dc.description.abstractThis research presents a new group of mathematical functions connected to Bernoulli’s Lemniscate, using the 𝑞-derivative. Expanding on previous studies, the research concentrates on determining coefficient approximations, the Fekete-Szego functional, Zalcman inequality, Krushkal inequality, along with the second and third Hankel determinants for this recently established collection of functions. Additionally, the study derives the Fekete-Szego inequality for the function 𝜉 𝑓(𝜉) and obtains the inverse function 𝑓−1(𝜉) for this specific class. This research advances our understanding in this area and suggests for further exploration
dc.identifier.citationAl-Shbeil, I., Shaba, T. G., Lupas, A. A., & Alhefthi, R. K. (2024). Exploring a distinct group of analytical functions linked with Bernoulli's Lemniscate using the q-derivative. Heliyon, 10(14).
dc.identifier.urifile:///Users/mac/Downloads/Dr.%20Shaba%20Timilehin%20Gideon%20(Department%20of%20Mathematics%20and%20Statistics)/PIIS2405844024101260.pdf
dc.identifier.urihttps://repository.run.edu.ng/handle/123456789/5771
dc.language.isoen_US
dc.publisherHeliyon
dc.relation.ispartofseries10; 1
dc.subjectHankel determinant
dc.subject𝑞-derivative operator
dc.subjectFekete-Szego estimates
dc.subjectBounded turning function
dc.subjectKrushkal inequality
dc.subjectZalcman inequality
dc.titleExploring a distinct group of analytical functions linked with Bernoulli’s Lemniscate using the 𝑞-derivative
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PIIS2405844024101260.pdf
Size:
538.69 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: