Comparative Study and Detection of COVID-19 and Related Viral Pneumonia Using Fine-Tuned Deep Transfer Learning
dc.contributor.author | Odim, Mba | |
dc.date.accessioned | 2022-03-01T10:33:48Z | |
dc.date.available | 2022-03-01T10:33:48Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Coronavirus (or COVID-19), which came into existence in 2019, is a viral pandemic that causes illness and death in the lives of human. Relentless research efforts have been on to improve key performance indicators for detection, isolation and early treatment. The aim of this study is to conduct a comparative study on the detection of COVID-19 and develop a Deep Transfer Learning Convolutional Neural Network (DTL-CNN) Model to classify chest X-ray images in a binary classification task (as either COVID-19 or Normal classes) and a three-class classification scenario (as either COVID-19, Viral-Pneumonia or Normal categories). Dataset was collected from Kaggle website containing a total of 600 images, out of which 375 were selected for model training, validation and testing (125 COVID-19, 125 Viral Pneumonia and 125 Normal). In order to ensure that the model generalizes well, data augmentation was performed by setting the random image rotation to 15 degrees clockwise. Two experiments were performed where a fine-tuned VGG-16 CNN and a fine-tuned VGG-19 CNN with Deep Transfer Learning (DTL) were implemented in Jupyter Notebook using Python programming language. The system was trained with sample datasets for the model to detect coronavirus in chest X-ray images. The fine-tuned VGG-16 and VGG-19 DTL models were trained for 40 epochs with batch size of 10, using Adam optimizer for weight updates and categorical cross entropy loss function. A learning rate of 1e−2 was used in fine-tuned VGG-16 while 1e−1 was used in fine-tuned VGG-19, and was evaluated on the 25% of the X-ray images. It was discovered that the validation and training losses were significantly high in the earlier epochs and then noticeably decreases as the training occurs in more subsequent epochs. Result showed that the fine-tuned VGG-16 and VGG-19 models, in this work, produced a classification accuracy of 99.00% for binary classes, and 97.33% and 89.33% for multi-class cases respectively. Hence, it was discovered that he VGG-16 based DTL model classified COVID-19 better than the VGG-19 based DTL model. Using the best performing fine-tuned VGG-16 DTL model, tests were carried out on 75 unlabeled images that did not participate in the model training and validation processes. The proposed models, in this work, provided accurate diagnostics for binary classification (COVID-19 and Normal) and multi-class classification (COVID-19, Viral Pneumonia and Normal), as it outperformed other existing models in the literature in terms of accuracy. | en_US |
dc.identifier.uri | http://dspace.run.edu.ng:8080/jspui/handle/123456789/1528 | |
dc.language.iso | en | en_US |
dc.subject | Deep Learning | en_US |
dc.title | Comparative Study and Detection of COVID-19 and Related Viral Pneumonia Using Fine-Tuned Deep Transfer Learning | en_US |
dc.type | Book chapter | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Comparative Study and Detection of COVID-19 and Related Pneumonia Using Fine-Tuned Transfer Learning-chapter only.pdf
- Size:
- 800.95 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: